Fixed vs Dynamic Sub-transfer in Reinforcement Learning Technical report
نویسنده
چکیده
We survey various transfer methods in Q-learning, a type of reinforcement learning, and present a variation on fixed sub-transfer which we call dynamic sub-transfer. We describe the pros and cons of dynamic sub-transfer as compared with the other transfer methods, and we describe qualitatively the situations where this method would be preferred over the fixed version of sub-transfer.
منابع مشابه
Fixed vs. Dynamic Sub-Transfer in Reinforcement Learning
We survey various task transfer methods in Qlearning and present a variation on fixed sub-transfer which we call dynamic sub-transfer. We discuss the benefits and drawbacks of dynamic sub-transfer as compared with the other transfer methods, and we describe qualitatively the situations where this method would be preferred over the fixed version of sub-transfer. We test this method against sever...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کامل